Fractal growth of a conventional calamitic liquid crystal.

نویسندگان

  • I Dierking
  • H K Chan
  • F Culfaz
  • S McQuire
چکیده

We report observation of liquid crystal phase ordering via fractal growth aggregates for a calamitic, non-bent-core mesogen. Fractal growth of a conventional smectic- C (Sm-C) phase from the isotropic melt after a temperature quench was experimentally investigated with respect to time, cell gap, quench depth, and quench rate. The determined fractal dimensions relating to the area as well as the perimeter of the growing aggregates suggest a phase formation process via a percolation mechanism. Computer simulations of the phase ordering process give further evidence for percolation growth, qualitatively reproducing the observed textures and quantitatively leading to the same fractal dimensions. We propose a general model of fractal smectic liquid crystal growth, which accounts for all of the different systems observed so far, bent-core or "banana" phases as well as the observation of fractal phase ordering of a conventional Sm-C phase. The model is based on the "breaking" of the commonly observed growth anisotropy by strong in-layer molecular interactions. These are provided by hydrogen bonding in the Sm-C case discussed here and by steric interactions in the case of the bent-core phases discussed in previous publications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear alignment behavior of nematic solutions induced by ultralong side-group liquid crystal polymers.

Addition of a low concentration of a very long (430 kg/mol) side group liquid crystal polymer is shown to produce dramatic changes in the flow characteristics of a calamitic nematic liquid crystal. This polymer causes a typical flow-aligning nematic liquid crystal to align near the velocity gradient direction rather than near the velocity direction, corresponding to having a tumbling parameter ...

متن کامل

Dielectric properties of mixtures of a bent-core and a calamitic liquid crystal.

Dielectric spectroscopy measurements have been performed on a bent-core nematic liquid crystal and on its binary mixtures with a calamitic nematic. We have detected more dispersions in the bent-core compound than in the calamitic one, including one at an unusually low frequency of a few kilohertz. The dispersions detected in the mixtures have been identified and the spectra have been split into...

متن کامل

Second-harmonic generation in a bent-core nematic liquid crystal.

Second-harmonic generation (SHG) is studied in the magnetically aligned nematic phase of a bent-core liquid crystal (BCN) and compared to similar measurements made on a conventional rodlike (calamitic) nematic compound. The second-harmonic (SH) light detected from both materials is predominantly due to scattering and therefore incoherent. Results on the calamitic are consistent with a polarizat...

متن کامل

Structural and Thermomechanical Investigation of Lyotropic Liquid Crystal Phases Doped with Monodisperse Microparticles

We present a study of the structural and thermomechanical properties of lyotropic phase in the quasi ternary system made of Cetylpyridinium chloride (CPCl)/hexanol/salt water (0.9 % by mass) with and without cobalt microparticles. Phase transition temperatures of the structural sequence isotropic L 1/nematic calamitic Nc ,/hexagonal H have been determined by differential scanning microcalorimet...

متن کامل

Kerr constant and third-order nonlinear optic susceptibility measurements in a liquid crystal composed of bent-shaped molecules.

We report the determination of the Kerr constant (B) and the real part of the third-order nonlinear optic susceptibility (chi(3)) above the nematic-isotropic phase transition temperature (TNI) of a liquid crystal composed of bent-shaped molecules. The values of B and chi(3) just above (approximately 0.3 degrees C) TNI are approximately 8x10(-12) m/V2 and 5x10(-20) m2/V2, respectively. The estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004